
Some Research Directions in the Ptolemy Project†
H. John Reekie and Edward A. Lee
University of California at Berkeley
johnr@eecs.berkeley.edu, eal@eecs.berkeley.edu

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent components. The key underlying principle in the
project is the use of well-defined models of computation that govern the interaction between
components. The software system Ptolemy II has been in public release for about nine months now,
and includes a number of implementations of different models of computation. In this presentation,
we outline some new research directions in this project, aimed at enhancing the level of productivity
and verifiability of real-time and embedded systems.

† Presented at the Workshop on New Visions for Software Design and Productivity: Research and
Applications, Vanderbilt University, Nashville Tennesee, December 12 – 14, 2001.

In this white paper, we briefly summarize the current state of the Ptolemy II software system [1],
and outline some current research directions that we feel may be of interest to this community.
One of the goals of Ptolemy II is to provide a theoretical and practical framework for defining
and producing embedded software. Executable models are constructed under a model of
computation, which can be thought of as the “laws of physics” that govern the interaction of
components in the model. The choice of model of computation depends strongly on the type of
model being constructed. Models of computation that have been implemented in the Ptolemy
group include synchronous dataflow, finite state machine, continuous time, and synchronous-
reactive models of computation. Other research groups at UCB have used Ptolemy II as a
platform for research into other models of computation [4, 5].

One principle of the Ptolemy project is that the choice of models of computation strongly affects
the quality of a system design. For example, in embedded systems, useful models of computation
typically include the notions of concurrency and time. Embedded systems by their nature contain
concurrent components and respond to external events. Choosing an inappropriate model of
computation may lead the designer into a more costly or less reliable implementation.

A second key principle is the use of multiple models of computation constructed in a hierarchy of
models. We believe that no single general-purpose model of computation is likely to deliver what
designers need to model a complex embedded system. Modeling the diverse implementation
technologies and their interactions is not reasonable within a homogeneous environment. Ptolemy
II therefore supports the construction and interoperability of executable models that are built
under a wide variety of models of computation.

Following sections describe some new areas of research that we are investigating within the
Ptolemy II framework.

Interface theories
We are just beginning to explore Alfaro and Henzinger’s interface theories [6] in the context of
Ptolemy. Although Ptolemy is an excellent research and execution platform for embedded
systems components, it does not directly support more abstract system specification. In particular,
it does not support refinement of interfaces into sub-interfaces and components.

An interface theory consists of an interface algebra A, a component algebra B, and an
implementation ◄ of A by B. Thus, B implements A, or B ◄ A. The interface algebra supports
the key operations of composition, connection, and refinement, while the component algebra
supports compositional implementation. Refinement of interfaces is contra-variant on inputs and
outputs (for example, in the I/O interface algebra, a refinement of the interface can have fewer
input ports and more output ports). Refinement of components, in contrast, is co-variant.

Examples of interface algebras include I/O interfaces, assume/guarantee interfaces, and port
dependency interfaces. Although Ptolemy does have an implicit I/O interface algebra (its type-
inference engine), it does not explicitly support the notion of different interface theories.

We are exploring the possibility of providing direct support for interface theories in Ptolemy. In
one scenario, interface theories are akin to a model of computation in Ptolemy. That is, it may be
possible for an implementer to provide a new interface theory, if the application domain and/or
theoretical model require it. The process of system design would then include successive

refinement of the model within the interface algebra, and eventual execution of components in the
appropriate component algebra – that is, within a suitable model of computation.

Modal and higher-order models
Ptolemy II is currently a first-order language. In addition, most models produced in Ptolemy have
static structure – that is, the model does not change structure during execution. Ptolemy does have
the ability to mutate models during execution, but this facility is somewhat ad-hoc and outside the
bounds of the formal theories on which much of Ptolemy is based [7]. We are interested in
pushing the boundaries of expressivity in Ptolemy with modal and higher-order models, together
with appropriate formalisms that describe this type of operation.

Figure 1. A modal model (from Eker and Lee). Each state in the upper model represents a different
connection of components in the lower model

In a modal model, a model such as a dataflow or continuous time model is embedded within a
model of a “control” nature, such as a state machine or synchronous-reactive model. Ptolemy
currently supports embedding of models of diverse MoCs, but each state of the state machine (for
example) represents a different model internally. In a modal model, each state of the machine
represents a different set of connections of a single dataflow (for example) model. Thus, the
construction is not strictly hierarchical, as state persists in the lower level model as the upper
level model proceeds through its state space (Figure 1).

In Ptolemy Classic (the first version of Ptolemy), a higher-order function was a component that
took the name of another component as a parameter, and replicated that component together with
an appropriate communication network. This was based on earlier work that drew parallels
between dataflow and functional programming systems [3]. Figure 2 illustrates a Ptolemy II
model that would benefit from a feature like this, and which could be expressed with two higher-
order functions. This model is being developed by Steve Neuendorffer for Joszef Ludwig (of
Lawrence Berkeley Labs), for analyzing signals from neutrino detection arrays suspended in the
Antarctic sea. A more realistic model would have 64 x 64 arrays of detectors.

Figure 2. A model that needs higher-order functions. This system could be represented as two higher-order
actors, parameterized by xmitModel and NetworkMerge actors

We are exploring re-introducing a facility like this in Ptolemy II, together with compilation
technology to make execution of large expansions feasible. We would, however, like it to be part
of a more general theoretical framework, in which the “higher-order-ness” does not necessarily
require static knowledge of parameters such as (in this example) the number of detectors in an
array. This theoretical framework will take account of the varying behavior of such higher-order
constructs in the presence of interface theories and different models of computation.

A more general form of higher-order behavior is exemplified by work done by Esser and Janneck
for design space exploration [2]. (Although this work was done in the context of the Moses
system, Janneck is currently a post-doctoral researcher in the Ptolemy group.) In this context, a
model can be a first-class object. To perform design-space exploration, the designer constructs
two models: one to represent the search strategy, and one to represent the model being optimized.
The latter system is passed around the former system as a token, and parameters are fed into and
retrieved from this “model under test” to assist the “explorer” model in its task (Figure 3).

Conclusion
We have outlined some research directions under way in the Ptolemy project. As always, we
strive for a pragmatic blend of formalism and implementation. If successful, these research
fundamentals could become a simple architecture that serves as the basis for a distributed
experimental platform for further research into component-based design for embedded systems.
This would be done in the context of the NEPHEST project.

Figure 3. A design-space explorer model (implemented in Moses). The double-lined place accepts and
interconnects a model token.

References
1. Overview of the Ptolemy Project, Edward A. Lee, Technical Memorandum UCB/ERL M01/11
March 6, 2001. See also http://ptolemy.eecs.berkeley.edu/.

2. Exploratory Performance Evaluation using Dynamic and Parametric Petri Nets, Robert Esser
and Jörn W. Janneck, Proc. High Performance Computing 2000.

3. H. John Reekie, Realtime Signal Processing: Dataflow, Visual, and Functional Programming,
Ph. D. thesis, School of Electrical Engineering, University of Technology at Sydney, September
1995

4. K. Keutzer, S. Malik, A. R. Newton, J. Rabaey and A.Sangiovanni-Vincentelli. System Level
Design: Orthogonalization of Concerns and Platform-Based Design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(12), December 2000.

5. Thomas A. Henzinger, Benjamin Horowitz, Christoph Meyer Kirsch. Giotto: A Time-
Triggered Language for Embedded Programming. Proceedings of EMSOFT 2001.
Lecture Notes in Computer Science, Volume 2211, Springer-Verlag, 2001.

6. Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design.
Proceedings of the First International Workshop on Embedded Software (EMSOFT 2001),
Lecture Notes in Computer Science, Springer-Verlag, 2001.

7. E. A. Lee and A. Sangiovanni-Vincentelli, ``A Framework for Comparing Models of
Computation,'' IEEE Transactions on CAD, Vol. 17, No. 12, December 1998.

